Finally, I hope this sorts it out.
structure(list(Scenario = c("All buildings", "1,001 to 5,000 ",
"5,001 to 10,000 ", "10,001 to 25,000", "25,001 to 50,000", "50,001 to 100,000 ",
"100,001 to 200,000 ", "200,001 to 500,000 ", "Over 500,000 ",
"Education", "Food sales ", "Food service ", "Health care ",
"Inpatient ", "Outpatient ", "Lodging ", "Mercantile ", "Retail (other than mall) ",
"Enclosed and strip malls ", "Office ", "Public assembly ", "Public order and safety ",
"Religious worship ", "Service ", "Warehouse and storage ", "Other ",
"Vacant ", "Before 1920", "1920 to 1945", "1946 to 1959", "1960 to 1969",
"1970 to 1979", "1980 to 1989", "1990 to 1999", "2000 to 2009",
"2010 to 2018", "Northeast", "New England ", "Middle Atlantic",
"Midwest", "East North Central", "West North Central", "South",
"South Atlantic ", "East South Central", "West South Central",
"West", "Mountain", "Pacific", "Cold or very cold", "Cool", "Mixed mild",
"Warm", "Hot or very hot", "1", "2", "3", "4 to 9", "10 or more",
"Any elevators", "1 elevator", "2 to 5 elevators", "6 or more elevators",
"Any escalators", "Fewer than 5", "5 to 9", "10 to 19", "20 to 49",
"50 to 99", "100 to 249", "250 or more", "Fewer than 40", "40 to 48",
"49 to 60", "61 to 84", "85 to 167", "Open continuously", "Nongovernment owned",
"Owner occupied", "Leased to tenant or tenants", "Unoccupied",
"Government owned", "Federal", "State", "Local", "Building owner",
"Business owner or tenant", "Property management", "Other", "Building owner",
"Business owner or tenant", "Property management", "Other", "1",
"2 to 5", "6 to 10", "11 to 20", "More than 20", "Currently unoccupied",
"Brick, stone, or stucco"), Number.of.buildings..thousand. = c(5613L,
2631L, 1288L, 949L, 385L, 217L, 93L, 40L, 9L, 437L, 163L, 286L,
137L, 9L, 129L, 207L, 513L, 346L, 167L, 970L, 488L, 81L, 439L,
866L, 792L, 108L, 124L, 323L, 368L, 496L, 673L, 787L, 752L, 844L,
860L, 508L, 769L, 274L, 496L, 1647L, 1074L, 573L, 2011L, 987L,
313L, 711L, 1186L, 431L, 755L, 511L, 1644L, 1169L, 1495L, 794L,
3822L, 1270L, 364L, 142L, 16L, 499L, 362L, 121L, 16L, 14L, 2968L,
1113L, 713L, 492L, 201L, 90L, 37L, 1233L, 1473L, 1231L, 618L,
421L, 637L, 4693L, 3104L, 1511L, 78L, 920L, 70L, 246L, 603L,
4636L, 783L, 83L, 110L, 4864L, 456L, 42L, 250L, 4504L, 805L,
134L, 63L, 19L, 87L, 2420L), Total.floorspace..million..square.feet. = c(94844L,
7471L, 9644L, 15464L, 13935L, 15269L, 12983L, 11761L, 8317L,
13623L, 1006L, 1385L, 4018L, 2259L, 1760L, 6976L, 10776L, 5188L,
5588L, 16662L, 7192L, 1538L, 5471L, 6208L, 16335L, 2407L, 1246L,
3568L, 5581L, 6823L, 10258L, 12902L, 13298L, 15066L, 17254L,
10094L, 15811L, 3737L, 12074L, 25488L, 17374L, 8114L, 34353L,
17732L, 5272L, 11349L, 19192L, 7411L, 11781L, 6934L, 26339L,
24731L, 24605L, 12235L, 42188L, 23152L, 10480L, 13027L, 5998L,
36474L, 14194L, 13312L, 8968L, 3753L, 19535L, 10285L, 11346L,
16132L, 12961L, 12433L, 12152L, 10200L, 18744L, 22739L, 14604L,
9803L, 18754L, 73201L, 44617L, 27937L, 647L, 21644L, 1946L, 6854L,
12843L, 78105L, 12558L, 1949L, 2233L, 81555L, 7373L, 1044L, 4872L,
64261L, 16365L, 5530L, 3894L, 3989L, 804L, 45718L), Total..trillion.British.thermal.units..Btu.. = c(11861L,
1081L, 1078L, 1634L, 1658L, 1820L, 1689L, 1732L, 1169L, 1268L,
530L, 601L, 947L, 644L, 303L, 991L, 1785L, 703L, 1082L, 2247L,
865L, 212L, 264L, 445L, 964L, 693L, 50L, 349L, 643L, 657L, 1185L,
1579L, 1793L, 1767L, 2509L, 1378L, 1876L, 430L, 1446L, 2956L,
2024L, 932L, 4730L, 2539L, 648L, 1543L, 2299L, 939L, 1360L, 859L,
2950L, 3164L, 3172L, 1715L, 5223L, 2449L, 1254L, 1943L, 992L,
5056L, 1532L, 1983L, 1541L, 550L, 1612L, 1198L, 1263L, 2167L,
1744L, 1781L, 2096L, 691L, 1686L, 2238L, 1983L, 1712L, 3551L,
9349L, 5585L, 3746L, 18L, 2512L, 267L, 912L, 1333L, 9660L, 1607L,
283L, 311L, 10062L, 1025L, 162L, 612L, 7708L, 2107L, 791L, 618L,
611L, 26L, 6013L), Total...Btu. = c(4090L, 373L, 372L, 564L,
572L, 627L, 582L, 597L, 403L, 437L, 183L, 207L, 327L, 222L, 105L,
342L, 616L, 242L, 373L, 775L, 298L, 73L, 91L, 153L, 332L, 239L,
17L, 120L, 222L, 227L, 409L, 545L, 618L, 609L, 865L, 475L, 647L,
148L, 499L, 1019L, 698L, 321L, 1631L, 876L, 223L, 532L, 793L,
324L, 469L, 296L, 1017L, 1091L, 1094L, 591L, 1801L, 845L, 432L,
670L, 342L, 1743L, 528L, 684L, 531L, 190L, 556L, 413L, 436L,
747L, 602L, 614L, 723L, 238L, 581L, 772L, 684L, 590L, 1225L,
3224L, 1926L, 1292L, 6L, 866L, 92L, 314L, 460L, 3331L, 554L,
98L, 107L, 3470L, 354L, 56L, 211L, 2658L, 727L, 273L, 213L, 211L,
9L, 2073L), Total..billion.kilowatthours. = c(1199L, 109L, 109L,
165L, 168L, 184L, 171L, 175L, 118L, 128L, 54L, 61L, 96L, 65L,
31L, 100L, 180L, 71L, 109L, 227L, 87L, 21L, 27L, 45L, 97L, 70L,
5L, 35L, 65L, 66L, 120L, 160L, 181L, 179L, 254L, 139L, 190L,
43L, 146L, 299L, 205L, 94L, 478L, 257L, 65L, 156L, 232L, 95L,
137L, 87L, 298L, 320L, 321L, 173L, 528L, 248L, 127L, 196L, 100L,
511L, 155L, 200L, 156L, 56L, 163L, 121L, 128L, 219L, 176L, 180L,
212L, 70L, 170L, 226L, 200L, 173L, 359L, 945L, 564L, 379L, 2L,
254L, 27L, 92L, 135L, 976L, 162L, 29L, 31L, 1017L, 104L, 16L,
62L, 779L, 213L, 80L, 62L, 62L, 3L, 608L), Total..million.dollars. = c(119248L,
12170L, 11658L, 17352L, 17325L, 17609L, 15942L, 16565L, 10628L,
12594L, 5306L, 5890L, 8911L, 5576L, 3334L, 9634L, 16549L, 6817L,
9732L, 23712L, 8524L, 2061L, 2996L, 5060L, 10426L, 7066L, 519L,
3604L, 6799L, 6596L, 12077L, 16053L, 18961L, 17804L, 24479L,
12875L, 21752L, 6792L, 14961L, 29153L, 20275L, 8878L, 40879L,
23288L, 6159L, 11432L, 27464L, 8175L, 19288L, 8576L, 30085L,
32172L, 33026L, 15389L, 52814L, 25479L, 12620L, 18783L, 9552L,
49606L, 15670L, 19486L, 14449L, 4986L, 17815L, 12301L, 12969L,
21626L, 17338L, 17253L, 19946L, 7564L, 17702L, 23075L, 20289L,
16926L, 33693L, 94988L, 55964L, 38813L, 210L, 24261L, 2461L,
8054L, 13745L, 96532L, 16798L, 2830L, 3089L, 100383L, 10734L,
1615L, 6516L, 78400L, 20584L, 7982L, 6224L, 5780L, 278L, 58662L
), usd_per_sqft = c(1.25730673527055, 1.62896533261946, 1.2088345085027,
1.12209001551992, 1.24327233584499, 1.15325168642347, 1.2279134252484,
1.4084686676303, 1.2778646146447, 0.924465976657124, 5.27435387673956,
4.25270758122744, 2.21777003484321, 2.46834882691456, 1.89431818181818,
1.38102064220183, 1.53572754268745, 1.31399383191982, 1.74158911954188,
1.42311847317249, 1.18520578420467, 1.34005201560468, 0.547614695668068,
0.815077319587629, 0.638261401897765, 2.93560448691317, 0.41653290529695,
1.01008968609865, 1.21824045869916, 0.966730177341345, 1.17732501462273,
1.24422570144164, 1.42585351180629, 1.1817337050312, 1.41874347977281,
1.27551020408163, 1.37575105938903, 1.81750066898582, 1.23910882888852,
1.14379315756434, 1.16697363877058, 1.09415824500863, 1.18996885279306,
1.31333182946086, 1.16824734446131, 1.00731341968455, 1.43101292205085,
1.10309000134935, 1.63721246074187, 1.23680415344678, 1.14222255970234,
1.30087744126804, 1.34224751066856, 1.25778504290969, 1.25187257039917,
1.10050967519005, 1.20419847328244, 1.44185153911108, 1.59253084361454,
1.36003728683446, 1.10398760039453, 1.46379206730769, 1.61117305976806,
1.32853717026379, 0.911952905042232, 1.19601361205639, 1.14304600740349,
1.34056533597818, 1.3377054239642, 1.38767795383254, 1.64137590520079,
0.74156862745098, 0.944408877507469, 1.0147763753903, 1.3892769104355,
1.72661430174436, 1.79657673029754, 1.29763254600347, 1.2543201022032,
1.38930450656835, 0.324574961360124, 1.12091110700425, 1.26464542651593,
1.17508024511234, 1.07023281164837, 1.23592599705525, 1.33763338111164,
1.4520266803489, 1.3833407971339, 1.23086260805591, 1.45585243455852,
1.54693486590038, 1.33743842364532, 1.2200245872302, 1.25780629391995,
1.44339963833635, 1.59835644581407, 1.44898470794685, 0.345771144278607,
1.28312699593158), mean_area = c(16900, 2800, 7500, 16300, 36200,
70300, 140200, 293800, 947600, 31100, 6200, 4800, 29300, 264800,
13700, 33700, 21000, 15000, 33500, 17200, 14700, 18900, 12500,
7200, 20600, 22200, 10000, 11000, 15200, 13700, 15200, 16400,
17700, 17800, 20100, 19900, 20600, 13700, 24400, 15500, 16200,
14200, 17100, 18000, 16800, 16000, 16200, 17200, 15600, 13600,
16000, 21200, 16500, 15400, 11000, 18200, 28800, 92000, 379900,
73000, 39200, 110000, 545800, 277800, 6600, 9200, 15900, 32800,
64500, 137900, 329900, 8300, 12700, 18500, 23600, 23300, 29400,
15600, 14400, 18500, 8300, 23500, 27700, 27800, 21300, 16800,
16000, 23400, 20200, 16800, 16200, 24800, 19500, 14300, 20300,
41300, 61600, 206900, 9200, 18900), usd_per_avg_area = c(21248.4838260723,
4561.10293133449, 9066.25881377022, 18290.0672529746, 45006.4585575888,
81073.5935555701, 172153.462219826, 413808.094549783, 1210904.50883732,
28750.8918740366, 32700.9940357853, 20412.9963898917, 64980.6620209059,
653618.769366977, 25952.1590909091, 46540.3956422018, 32250.2783964365,
19709.9074787972, 58343.2355046528, 24477.6377385668, 17422.5250278087,
25326.9830949285, 6845.18369585085, 5868.55670103093, 13148.184879094,
65170.4196094724, 4165.3290529695, 11110.9865470852, 18517.2549722272,
13244.2034295764, 17895.3402222655, 20405.3015036428, 25237.6071589713,
21034.8599495553, 28516.7439434334, 25382.6530612245, 28340.4718234141,
24899.7591651057, 30234.2554248799, 17728.7939422473, 18904.9729480833,
15537.0470791225, 20348.4673827613, 23639.9729302955, 19626.5553869499,
16117.0147149529, 23182.4093372238, 18973.1480232087, 25540.5143875732,
16820.5364868763, 18275.5609552375, 27578.6017548825, 22147.0839260313,
19369.8896608092, 13770.5982743908, 20029.2760884589, 34680.9160305343,
132650.341598219, 605002.467489163, 99282.7219389154, 43276.3139354657,
161017.127403846, 879378.256021409, 369067.625899281, 6018.88917327873,
11003.3252309188, 18174.4315177155, 43970.5430200843, 86281.9998456909,
191360.789833508, 541489.911125741, 6155.01960784314, 11993.9927443449,
18773.3629447205, 32786.9350862777, 40230.1132306437, 52819.3558707476,
20243.0677176541, 18062.209471726, 25702.1333715145, 2693.97217928903,
26341.4110145999, 35030.6783144913, 32667.2308141231, 22795.9588881103,
20763.5567505281, 21402.1340977863, 33977.4243201642, 27943.4841021048,
20678.4918153393, 23584.8094398481, 38363.9846743295, 26080.0492610837,
17446.3515973919, 25533.467766575, 59612.4050632911, 98458.7570621469,
299794.936074204, 3181.09452736318, 24251.1002231069)), na.action = structure(c(`2` = 2L,
`11` = 11L, `30` = 30L, `40` = 40L, `54` = 54L, `60` = 60L, `66` = 66L,
`72` = 72L, `80` = 80L, `87` = 87L, `96` = 96L, `101` = 101L,
`106` = 106L, `113` = 113L, `121` = 121L, `130` = 130L, `134` = 134L,
`140` = 140L, `157` = 157L, `166` = 166L, `172` = 172L, `179` = 179L,
`183` = 183L, `187` = 187L, `191` = 191L, `199` = 199L, `204` = 204L,
`209` = 209L, `210` = 210L, `215` = 215L, `220` = 220L, `221` = 221L,
`230` = 230L, `238` = 238L, `239` = 239L, `248` = 248L, `251` = 251L,
`255` = 255L, `259` = 259L, `266` = 266L, `267` = 267L, `276` = 276L,
`287` = 287L, `293` = 293L, `298` = 298L, `311` = 311L, `313` = 313L,
`321` = 321L, `322` = 322L), class = "omit"), row.names = c(1L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 31L,
32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L, 41L, 42L, 43L, 44L, 45L,
46L, 47L, 48L, 49L, 50L, 51L, 52L, 53L, 55L, 56L, 57L, 58L, 59L,
61L, 62L, 63L, 64L, 65L, 67L, 68L, 69L, 70L, 71L, 73L, 74L, 75L,
76L, 77L, 78L, 79L, 81L, 82L, 83L, 84L, 85L, 86L, 88L, 89L, 90L,
91L, 92L, 93L, 94L, 95L, 97L, 98L, 99L, 100L, 102L, 103L, 104L,
105L, 107L, 108L, 109L, 110L, 111L, 112L, 114L), class = "data.frame")