mice package for unsupervised ML

Hello, I have many doubts regarding using mice for a dataset > 1000 elements and with 6% to 15% of nulls.

In my situation I try to create a mixed unsupervised model with FAMD or dude.mix but the examples in the different sources indicate the use of a logistic regression when there is a target variable

# source: https://amices.org/mice/
# multiple impute the missing values
imp <- mice(nhanes, maxit = 2, m = 2, seed = 1)
#> 
#>  iter imp variable
#>   1   1  bmi  hyp  chl
#>   1   2  bmi  hyp  chl
#>   2   1  bmi  hyp  chl
#>   2   2  bmi  hyp  chl
# fit complete-data model
fit <- with(imp, lm(chl ~ age + bmi))

# pool and summarize the results
summary(pool(fit))
#>          term estimate std.error statistic    df p.value
#> 1 (Intercept)     9.08     73.09     0.124  4.50  0.9065
#> 2         age    35.23     17.46     2.017  1.36  0.2377
#> 3         bmi     4.69      1.94     2.417 15.25  0.0286

Some articles indicate that using MICE to impute has better results than other methods.
Url