If important is considered to be the proportion of costs for some combination of property and expense types
#database
df1<- matrix(c(9000,2000,8000,1200,800,1000,7000,1200,9000),
nrow=3,
ncol=3,
byrow=TRUE)
colnames(df1) <- c("Consumption","Waste total","logistic costs")
row.names(df1) <- c("Propertie1","Propertie2","Propertie3")
# proportion of total cost across all properties, types
prop.table(df1)
#> Consumption Waste total logistic costs
#> Propertie1 0.22959184 0.05102041 0.2040816
#> Propertie2 0.03061224 0.02040816 0.0255102
#> Propertie3 0.17857143 0.03061224 0.2295918
rowSums(df1)
#> Propertie1 Propertie2 Propertie3
#> 19000 3000 17200
rowSums(df1)/sum(df1)
#> Propertie1 Propertie2 Propertie3
#> 0.48469388 0.07653061 0.43877551
# proportion of total cost of all properties by type
colSums(df1)
#> Consumption Waste total logistic costs
#> 17200 4000 18000
colSums(df1) / sum(df1)
#> Consumption Waste total logistic costs
#> 0.4387755 0.1020408 0.4591837
# rowwise (by property)
df1[1,1:3]
#> Consumption Waste total logistic costs
#> 9000 2000 8000
df1[1,1:3]/ sum(df1[1,1:3])
#> Consumption Waste total logistic costs
#> 0.4736842 0.1052632 0.4210526
df1[2,1:3]
#> Consumption Waste total logistic costs
#> 1200 800 1000
df1[2,1:3]/ sum(df1[2,1:3])
#> Consumption Waste total logistic costs
#> 0.4000000 0.2666667 0.3333333
df1[3,1:3]
#> Consumption Waste total logistic costs
#> 7000 1200 9000
df1[3,1:3]/ sum(df1[3,1:3])
#> Consumption Waste total logistic costs
#> 0.40697674 0.06976744 0.52325581