Pre and post Flag column on specific service and its date time

Dear Sir/Madam
I am trying to create a flag of pre and post based on the specific service 'Bedday-HTHC' and its date time.
The outcome will be in the column 'flag'.
This way, I will be able to report pre-hthc and post-hthc costs.

The key here is the ordering of the ordering of the DayOfStay in ascending.

Context = 'better at home' is a new healthcare model by discharging patients earlier to their own home for saving hospital beds and patient convenience

Now, I am doing evaluation of the program by looking it the financial impact.

I hope you will help me in this important endeavour.

Thank you very much.
G

Repex here.

hthc <- tibble::tribble(
                 ~id,                          ~area,                  ~service, ~Quantity, ~DayOfStay,     ~StartDateTime,       ~EndDateTime, ~Total.Cost,       ~flag,
          "patient1",                    "A0160_CCU",              "Bedday-CCU",   9.18333,         1L,  "24/04/2022 0:00",  "24/04/2022 9:10", 1366.438369,  "pre_hthc",
          "patient1",         "A4402_CardiacSurgery",           "Med Days-CSUR",        60,         1L,  "24/04/2022 0:00", "24/04/2022 23:59", 647.2966689,  "pre_hthc",
          "patient1",     "P0052_Chaplaincy Service",              "Chaplaincy",         1,         1L,  "24/04/2022 0:00", "24/04/2022 23:59", 1.872038507,  "pre_hthc",
          "patient1",               "R0155_Catering",                  "CATRG-",         1,         1L,  "24/04/2022 0:00", "24/04/2022 23:59", 46.76093351,  "pre_hthc",
          "patient1",            "A0903_Ward 5 East",               "Bedday-5E",  14.81667,         1L,  "24/04/2022 9:11", "24/04/2022 23:59", 16.83546044,  "pre_hthc",
          "patient1",           "N0002_Pharmacy_S&W",                "Pharm_SW",         3,         1L, "24/04/2022 10:16", "24/04/2022 10:16", 53.34547284,  "pre_hthc",
          "patient1",           "N0002_Pharmacy_S&W",                "Pharm_SW",         8,         1L, "24/04/2022 10:16", "24/04/2022 10:16", 53.34547284,  "pre_hthc",
          "patient1",               "N0502_Pharmacy",                 "Pharm-N",         3,         1L, "24/04/2022 10:16", "24/04/2022 10:16", 2.363352182,  "pre_hthc",
          "patient1",               "N0502_Pharmacy",                 "Pharm-N",         8,         1L, "24/04/2022 10:16", "24/04/2022 10:16", 1.010536795,  "pre_hthc",
          "patient1",            "A0903_Ward 5 East",               "Bedday-5E",        24,         2L,  "25/04/2022 0:00", "25/04/2022 23:59", 27.27003102,  "pre_hthc",
          "patient1",         "A4402_CardiacSurgery",           "Med Days-CSUR",        60,         2L,  "25/04/2022 0:00", "25/04/2022 23:59", 647.2966689,  "pre_hthc",
          "patient1",     "P0052_Chaplaincy Service",              "Chaplaincy",         1,         2L,  "25/04/2022 0:00", "25/04/2022 23:59", 1.872038507,  "pre_hthc",
          "patient1",               "R0155_Catering",                  "CATRG-",         1,         2L,  "25/04/2022 0:00", "25/04/2022 23:59", 46.76093351,  "pre_hthc",
          "patient1",      "Y0252_Path_Biochemistry",        "Path-Y0252-66500",         1,         2L,  "25/04/2022 0:00",  "25/04/2022 0:00", 2.881859708,  "pre_hthc",
          "patient1",      "Y0252_Path_Biochemistry",        "Path-Y0252-66512",         1,         2L,  "25/04/2022 0:00",  "25/04/2022 0:00", 5.250511523,  "pre_hthc",
          "patient1",       "Y0352_Path_Haemotology",        "Path-Y0352-65070",         1,         2L,  "25/04/2022 0:00",  "25/04/2022 0:00", 14.07869458,  "pre_hthc",
          "patient1",       "Y0352_Path_Haemotology",        "Path-Y0352-65120",         1,         2L,  "25/04/2022 0:00",  "25/04/2022 0:00", 11.37337679,  "pre_hthc",
          "patient1",     "Y1106_Imaging Department",   "IMG-R.XRCHEST.AER2.NH",         1,         2L, "25/04/2022 15:33", "25/04/2022 15:33", 84.73569345,  "pre_hthc",
          "patient1",            "A0903_Ward 5 East",               "Bedday-5E",        24,         3L,  "26/04/2022 0:00", "26/04/2022 23:59", 27.27003102,  "pre_hthc",
          "patient1",         "A4402_CardiacSurgery",           "Med Days-CSUR",        60,         3L,  "26/04/2022 0:00", "26/04/2022 23:59", 647.2966689,  "pre_hthc",
          "patient1",     "P0052_Chaplaincy Service",              "Chaplaincy",         1,         3L,  "26/04/2022 0:00", "26/04/2022 23:59", 1.872038507,  "pre_hthc",
          "patient1",               "R0155_Catering",                  "CATRG-",         1,         3L,  "26/04/2022 0:00", "26/04/2022 23:59", 46.76093351,  "pre_hthc",
          "patient1",      "Y0252_Path_Biochemistry",        "Path-Y0252-66500",         1,         3L,  "26/04/2022 0:00",  "26/04/2022 0:00", 2.881859708,  "pre_hthc",
          "patient1",      "Y0252_Path_Biochemistry",        "Path-Y0252-66512",         1,         3L,  "26/04/2022 0:00",  "26/04/2022 0:00", 5.250511523,  "pre_hthc",
          "patient1",       "Y0352_Path_Haemotology",        "Path-Y0352-65070",         1,         3L,  "26/04/2022 0:00",  "26/04/2022 0:00", 14.07869458,  "pre_hthc",
          "patient1",                     "N2702_OT",                   "OCCUP",         1,         3L,  "26/04/2022 9:31",  "26/04/2022 9:31", 231.3588805,  "pre_hthc",
          "patient1",                     "N2702_OT",                   "OCCUP",         1,         3L, "26/04/2022 10:05", "26/04/2022 10:05", 231.3588805,  "pre_hthc",
          "patient1",           "N2602_Interpreters", "Interpreter-interpreter",         1,         3L, "26/04/2022 13:37", "26/04/2022 14:22", 128.6254261,  "pre_hthc",
          "patient1",            "A0903_Ward 5 East",               "Bedday-5E",  14.03333,         4L,  "27/04/2022 0:00", "27/04/2022 14:01", 15.94538935,  "pre_hthc",
          "patient1",         "A4402_CardiacSurgery",           "Med Days-CSUR",        60,         4L,  "27/04/2022 0:00", "27/04/2022 23:59", 647.2966689,  "pre_hthc",
          "patient1",     "P0052_Chaplaincy Service",              "Chaplaincy",         1,         4L,  "27/04/2022 0:00", "27/04/2022 23:59", 1.872038507,  "pre_hthc",
          "patient1",               "R0155_Catering",                  "CATRG-",         1,         4L,  "27/04/2022 0:00", "27/04/2022 23:59", 46.76093351,  "pre_hthc",
          "patient1",      "Y0252_Path_Biochemistry",        "Path-Y0252-66500",         1,         4L,  "27/04/2022 0:00",  "27/04/2022 0:00", 2.881859708,  "pre_hthc",
          "patient1",      "Y0252_Path_Biochemistry",        "Path-Y0252-66512",         1,         4L,  "27/04/2022 0:00",  "27/04/2022 0:00", 5.250511523,  "pre_hthc",
          "patient1",       "Y0352_Path_Haemotology",        "Path-Y0352-65070",         1,         4L,  "27/04/2022 0:00",  "27/04/2022 0:00", 14.07869458,  "pre_hthc",
          "patient1",           "N0002_Pharmacy_S&W",                "Pharm_SW",         4,         4L,  "27/04/2022 8:31",  "27/04/2022 8:31", 53.34547284,  "pre_hthc",
          "patient1",               "N0502_Pharmacy",                 "Pharm-N",         4,         4L,  "27/04/2022 8:31",  "27/04/2022 8:31", 1.108330678,  "pre_hthc",
          "patient1",     "Y1106_Imaging Department",   "IMG-R.XRCHEST.AER1.NH",         1,         4L,  "27/04/2022 9:52",  "27/04/2022 9:52", 84.73569345,  "pre_hthc",
          "patient1",           "N0002_Pharmacy_S&W",                "Pharm_SW",         1,         4L, "27/04/2022 10:47", "27/04/2022 10:47", 53.34547284,  "pre_hthc",
          "patient1",           "N0002_Pharmacy_S&W",                "Pharm_SW",         1,         4L, "27/04/2022 10:47", "27/04/2022 10:47", 53.34547284,  "pre_hthc",
          "patient1",           "N0002_Pharmacy_S&W",                "Pharm_SW",         7,         4L, "27/04/2022 10:47", "27/04/2022 10:47", 53.34547284,  "pre_hthc",
          "patient1",           "N0002_Pharmacy_S&W",                "Pharm_SW",        30,         4L, "27/04/2022 10:47", "27/04/2022 10:47", 53.34547284,  "pre_hthc",
          "patient1",           "N0002_Pharmacy_S&W",                "Pharm_SW",        30,         4L, "27/04/2022 10:47", "27/04/2022 10:47", 53.34547284,  "pre_hthc",
          "patient1",           "N0002_Pharmacy_S&W",                "Pharm_SW",        30,         4L, "27/04/2022 10:47", "27/04/2022 10:47", 53.34547284,  "pre_hthc",
          "patient1",           "N0002_Pharmacy_S&W",                "Pharm_SW",       100,         4L, "27/04/2022 10:47", "27/04/2022 10:47", 53.34547284,  "pre_hthc",
          "patient1",               "N0502_Pharmacy",                 "Pharm-N",         1,         4L, "27/04/2022 10:47", "27/04/2022 10:47",  6.06322077,  "pre_hthc",
          "patient1",               "N0502_Pharmacy",                 "Pharm-N",        30,         4L, "27/04/2022 10:47", "27/04/2022 10:47", 2.265558298,  "pre_hthc",
          "patient1",               "N0502_Pharmacy",                 "Pharm-N",        30,         4L, "27/04/2022 10:47", "27/04/2022 10:47", 2.656733832,  "pre_hthc",
          "patient1",               "N0502_Pharmacy",                 "Pharm-N",        30,         4L, "27/04/2022 10:47", "27/04/2022 10:47", 5.655746256,  "pre_hthc",
          "patient1",           "N0896_Pharmacy PBS",                 "Pharm-Y",         1,         4L, "27/04/2022 10:47", "27/04/2022 10:47", 309.1159459,  "pre_hthc",
          "patient1",           "N0896_Pharmacy PBS",                 "Pharm-Y",         7,         4L, "27/04/2022 10:47", "27/04/2022 10:47", 0.125355775,  "pre_hthc",
          "patient1",           "N0896_Pharmacy PBS",                 "Pharm-Y",       100,         4L, "27/04/2022 10:47", "27/04/2022 10:47", 1.720792916,  "pre_hthc",
          "patient1",           "N0002_Pharmacy_S&W",                "Pharm_SW",        28,         4L, "27/04/2022 12:08", "27/04/2022 12:08", 53.34547284,  "pre_hthc",
          "patient1",           "N0896_Pharmacy PBS",                 "Pharm-Y",        28,         4L, "27/04/2022 12:08", "27/04/2022 12:08", 7.954393743,  "pre_hthc",
          "patient1",           "N2602_Interpreters", "Interpreter-interpreter",         1,         4L, "27/04/2022 12:46", "27/04/2022 13:31", 128.6254261,  "pre_hthc",
          "patient1", "F0423_Better_at_home_cardiac",             "Bedday-HTHC",   9.96667,         4L, "27/04/2022 14:02", "27/04/2022 23:59", 344.3686508, "post_hthc",
          "patient1",         "A4402_CardiacSurgery",           "Med Days-CSUR",        60,         5L,  "28/04/2022 0:00", "28/04/2022 23:59", 647.2966689, "post_hthc",
          "patient1", "F0423_Better_at_home_cardiac",             "Bedday-HTHC",        24,         5L,  "28/04/2022 0:00", "28/04/2022 23:59", 829.2486477, "post_hthc",
          "patient1",     "P0052_Chaplaincy Service",              "Chaplaincy",         1,         5L,  "28/04/2022 0:00", "28/04/2022 23:59", 1.872038507, "post_hthc",
          "patient1",               "R0155_Catering",                  "CATRG-",         1,         5L,  "28/04/2022 0:00", "28/04/2022 23:59", 46.76093351, "post_hthc",
          "patient1",         "A4402_CardiacSurgery",           "Med Days-CSUR",        60,         6L,  "29/04/2022 0:00", "29/04/2022 14:00", 647.2966689, "post_hthc",
          "patient1", "F0423_Better_at_home_cardiac",             "Bedday-HTHC",        14,         6L,  "29/04/2022 0:00", "29/04/2022 14:00", 483.7283779, "post_hthc",
          "patient1",     "P0052_Chaplaincy Service",              "Chaplaincy",         1,         6L,  "29/04/2022 0:00", "29/04/2022 14:00", 1.872038507, "post_hthc",
          "patient1",               "R0155_Catering",                  "CATRG-",         1,         6L,  "29/04/2022 0:00", "29/04/2022 14:00", 46.76093351, "post_hthc"
          )
hthc
#> # A tibble: 64 × 9
#>    id      area  service Quantity DayOfStay StartDateTime EndDateTime Total.Cost
#>    <chr>   <chr> <chr>      <dbl>     <int> <chr>         <chr>            <dbl>
#>  1 patien… A016… Bedday…     9.18         1 24/04/2022 0… 24/04/2022…    1366.  
#>  2 patien… A440… Med Da…    60            1 24/04/2022 0… 24/04/2022…     647.  
#>  3 patien… P005… Chapla…     1            1 24/04/2022 0… 24/04/2022…       1.87
#>  4 patien… R015… CATRG-      1            1 24/04/2022 0… 24/04/2022…      46.8 
#>  5 patien… A090… Bedday…    14.8          1 24/04/2022 9… 24/04/2022…      16.8 
#>  6 patien… N000… Pharm_…     3            1 24/04/2022 1… 24/04/2022…      53.3 
#>  7 patien… N000… Pharm_…     8            1 24/04/2022 1… 24/04/2022…      53.3 
#>  8 patien… N050… Pharm-N     3            1 24/04/2022 1… 24/04/2022…       2.36
#>  9 patien… N050… Pharm-N     8            1 24/04/2022 1… 24/04/2022…       1.01
#> 10 patien… A090… Bedday…    24            2 25/04/2022 0… 25/04/2022…      27.3 
#> # ℹ 54 more rows
#> # ℹ 1 more variable: flag <chr>

library(lubridate)
#> 
#> Attaching package: 'lubridate'
#> The following objects are masked from 'package:base':
#> 
#>     date, intersect, setdiff, union

hthc$StartDateTime <- dmy_hm(hthc$StartDateTime)

hthc$EndDateTime <- dmy_hm(hthc$EndDateTime)

hthc
#> # A tibble: 64 × 9
#>    id       area                  service Quantity DayOfStay StartDateTime      
#>    <chr>    <chr>                 <chr>      <dbl>     <int> <dttm>             
#>  1 patient1 A0160_CCU             Bedday…     9.18         1 2022-04-24 00:00:00
#>  2 patient1 A4402_CardiacSurgery  Med Da…    60            1 2022-04-24 00:00:00
#>  3 patient1 P0052_Chaplaincy Ser… Chapla…     1            1 2022-04-24 00:00:00
#>  4 patient1 R0155_Catering        CATRG-      1            1 2022-04-24 00:00:00
#>  5 patient1 A0903_Ward 5 East     Bedday…    14.8          1 2022-04-24 09:11:00
#>  6 patient1 N0002_Pharmacy_S&W    Pharm_…     3            1 2022-04-24 10:16:00
#>  7 patient1 N0002_Pharmacy_S&W    Pharm_…     8            1 2022-04-24 10:16:00
#>  8 patient1 N0502_Pharmacy        Pharm-N     3            1 2022-04-24 10:16:00
#>  9 patient1 N0502_Pharmacy        Pharm-N     8            1 2022-04-24 10:16:00
#> 10 patient1 A0903_Ward 5 East     Bedday…    24            2 2022-04-25 00:00:00
#> # ℹ 54 more rows
#> # ℹ 3 more variables: EndDateTime <dttm>, Total.Cost <dbl>, flag <chr>

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union

hthc %>% 
  group_by(flag) %>% 
  summarise(cost = sum(Total.Cost))
#> # A tibble: 2 × 2
#>   flag       cost
#>   <chr>     <dbl>
#> 1 post_hthc 3049.
#> 2 pre_hthc  6132.

Created on 2023-07-21 with reprex v2.0.2

This topic was automatically closed 21 days after the last reply. New replies are no longer allowed.

If you have a query related to it or one of the replies, start a new topic and refer back with a link.