Hi everyone,
i am new in R Studio. I want to write a code;
- i separate data set train and test
- i want to use ROSE sampling with 10 times k-fold cross validation (train data set).
- after all, i predict class with Random forest.
This is my R code, please help me? Thank you.
data2<-read.csv("C:/Users/ugur/Desktop/R/ff.csv", header=TRUE)
str(data2)
data2$churn<-as.factor(data2$churn)
summary(data2)
set.seed(123)
ind <- sample(2, nrow(data2), replace = TRUE, prob = c(0.7, 0.3))
train <- data2[ind==1,]
test <- data2[ind==2,]
table(train$churn)
table(test$churn)
summary(test)
library(ROSE)
fit<-trainControl(data=ROSE(churn~., data =train , N = 4950, seed=111),method="repeatedcv", number=5, search="random", repeats="3", savePredictions=T)
#modelfitrose<-ROSE(churn~., data = , N = 4950, seed=111)$data
library(randomForest)
modelfitrose<-randomForest(churn~.,data=fit)
library(caret)
library(e1071)
confusionMatrix(predict(modelfitrose,test),test$churn,positive='1')