Not all models include a constant. Chapter 9 covers the effect of having c β 0. In the reprex below the model chosen by the ARIMA() function for the h02 data has a drift with non-zero value for c, while the model for victoria_pigs has no drift and c = 0.
library(fpp3)
#> ββ Attaching packages ββββββββββββββββββββββββββββββββββββββββββββ fpp3 0.4.0 ββ
#> β tibble 3.1.8 β tsibble 1.1.3
#> β dplyr 1.0.99.9000 β tsibbledata 0.4.1
#> β tidyr 1.2.1 β feasts 0.3.0.9000
#> β lubridate 1.9.0 β fable 0.3.2.9000
#> β ggplot2 3.4.0
#> ββ Conflicts βββββββββββββββββββββββββββββββββββββββββββββββββ fpp3_conflicts ββ
#> β lubridate::date() masks base::date()
#> β dplyr::filter() masks stats::filter()
#> β tsibble::intersect() masks base::intersect()
#> β tsibble::interval() masks lubridate::interval()
#> β dplyr::lag() masks stats::lag()
#> β tsibble::setdiff() masks base::setdiff()
#> β tsibble::union() masks base::union()
victoria_pigs <- aus_livestock %>%
filter(State == "Victoria" & Animal=="Pigs")
h02 <- PBS %>%
filter(ATC2 == "H02") %>%
summarise(Cost = sum(Cost)/1e6)
victoria_pigs %>%
model(ARIMA(Count)) %>%
report()
#> Series: Count
#> Model: ARIMA(2,1,2)(0,0,2)[12]
#>
#> Coefficients:
#> ar1 ar2 ma1 ma2 sma1 sma2
#> -1.0110 -0.2209 0.4194 -0.4604 0.4818 0.2070
#> s.e. 0.0767 0.0796 0.0752 0.0795 0.0432 0.0429
#>
#> sigma^2 estimated as 65208832: log likelihood=-5800.22
#> AIC=11614.43 AICc=11614.63 BIC=11644.69
h02 %>%
model(ARIMA(Cost)) %>%
report()
#> Series: Cost
#> Model: ARIMA(4,0,0)(1,1,1)[12] w/ drift
#>
#> Coefficients:
#> ar1 ar2 ar3 ar4 sar1 sma1 constant
#> 0.1381 0.4021 0.3031 -0.1577 0.1789 -0.6713 0.0080
#> s.e. 0.0764 0.0719 0.0753 0.0784 0.1261 0.0940 0.0014
#>
#> sigma^2 estimated as 0.002767: log likelihood=293.91
#> AIC=-571.83 AICc=-571.04 BIC=-545.77
Created on 2022-11-25 with reprex v2.0.2